
Team
sdmay20-17

Client
Bo Yang

Advisor

Halil Ceylan

Team Members/Roles

Tanner Dempsay – Communication Leader

Christian Royston – Git Master

Kyle Eckrich – Report Manager

Justin Kuennan – Web Master

Joe Van Treeck – Data Manager

Greg Starr – Logistics Manager

Team Email
sdmay20-17@iastate.edu

Team Website
http://sdmay20-17.sd.ece.iastate.edu/

Revised
4/26/2020

Development of an App in
Android Smart Phone for

Pavement Roughness
 Estimation

FINAL REPORT

mailto:sdmay20-17@iastate.edu
http://sdmay20-17.sd.ece.iastate.edu/

1

FINAL REPORT | SDMAY20-17

Executive Summary

Engineering Standards and Design Practices

• Agile Project Management

• Code Documentation

• Software Testing Levels

• Top-down Software Development

• IETF RTC 6455 Protocol for Websocket

• Requirement Driven Design and Implementation

Summary of Requirements

• Android application that records accelerometer data and location data during a

vehicle’s route

• Route data, including acceleration, GPS, etc. is sent to the server in real time

• Server calculates IRI value of pavement vehicle is driving on and transmit this back

to phone

• All data is stored in a MongoDB or similar database structure

• User interface for application is easy to use while operating motor vehicle. Data is

clearly visualized while the pavement is being measured

Applicable Courses from Iowa State University Curriculum

The following courses included content applicable to our project. These include topics

such as Android development, project management, data communications, and user-

interface design. Prerequisites taken earlier in the curriculum, such as MATH 165, will

assist with the development and implementation of the roughness calculations.

• COMS 309: Software Development Practices

• CPRE 185: Introduction to Computer Engineering

• PHYS 221: Introduction to Classical Physics I

• CPRE 288: Embedded Systems I

• MATH 165: Calculus I

New Skills/Knowledge acquired that was not taught in courses

Since our team is entirely made up of computer engineers, the skills we have acquired in

our coursework overlap significantly. This also means that most knowledge relevant to

this project that is not taught in our curriculum must be learned by all members. Server

implementations are one area we must acquire. The requirements for the backend

specifically request a NodeJS-based backend, which is JavaScript-based. This language is

not taught in the computer engineering core curriculum. This is the same situation for

2

FINAL REPORT | SDMAY20-17

database management. Though some members have exposure to these platforms from

their COM S 309 group projects, more research will need to be done to will understand

these tools.

Our team is also researching the current methodology and tools for measuring pavement

roughness. For this project to be useful to the end users, we need to build a model that

can accurately measure the roughness using a smartphone. This background knowledge

includes different types of pavement material, standards for measuring roughness, and use

cases for measuring.

3

FINAL REPORT | SDMAY20-17

Table of Contents

1 Introduction 6

1.1 Acknowledgement 6

1.2 Problem and Project Statement 6

1.3 Operational Environment 7

1.4 Requirements 7

1.5 Intended Users and Uses 9

1.6 Assumptions and Limitations 9

1.7 Expected End Product and Deliverables 10

2. Specifications and Analysis 11

2.1 Revised Project Design 11

2.2 Design Analysis 14

2.3 Development Process 14

2.4 Design Plan 15

3. Statement of Work 18

3.1 Previous Work And Literature 18

3.2 Implementation 18

3.2.1 Server 18

3.2.2 Android App 19

3.2.3 Python Computation Tool 20

3.3 Task Decomposition 21

3.5 Project Proposed Milestones and Evaluation Criteria 22

3.6 Project Tracking Procedures 23

3.7 Expected Results and Validation 23

4. Project Timeline, Estimated Resources, and Challenges 23

4.1 Project Timeline 23

4.3 Personnel Effort Requirements 24

4.4 Other Resource Requirements 25

4.5 Financial Requirements 25

5. Testing and Implementation 26

5.1 Hardware and software 26

5.2 Functional Testing 26

4

FINAL REPORT | SDMAY20-17

5.3 Non-Functional Testing 28

5.4 Process 30

5.5 Results 31

6. Closing Material 32

6.1 Conclusion 32

6.2 References 32

6.3 Appendices 33

Appendix I: Screen sketches for Android application 33

Appendix II – Operational Manual 33

NodeJS Server Setup 33

Android App Setup 34

5

FINAL REPORT | SDMAY20-17

List of Figures, Tables, Symbols, Definitions

Definitions:

• Department of Transportation (DOT)

• Electrical and Computer Engineering (ECE)

• Global Positioning System (GPS)

• International Roughness Index (IRI)

• JavaScript (JS)

Figures:

• Figure 1: IRI roughness scale [2]

• Figure 2: Quarter-car model of a vehicle suspension system [3].

• Figure 3: State space matrix representation of system shown in Figure 2 [7].

• Figure 4: Database structure with types and relationships

• Figure 5: Block diagram of proposed solution with functionalities.

• Figure 6: Screen sketches for Android application

• Figure 7: Screenshots of final Android application

• Figure 8: Frequency response of acceleration over a sample route (unfiltered)

• Figure 9: Frequency response of acceleration over a sample route (filtered)

• Figure 10: Project Schedule Gantt Chart

• Figure 11: Process Diagram

Tables:

• Table 1: Personnel Effort Requirements

• Table 2: Financial Requirements

• Table 3: Test Plan for Functional Requirements

• Table 4: Test Results for Non-functional Requirements

6

FINAL REPORT | SDMAY20-17

1 Introduction

1.1 ACKNOWLEDGEMENT

Our team would like to thank our faculty advisors Bo Yang and Halil Ceylan for allowing

us to work on this project with his team and for all of their assistance. We would also like

to thank our Doctoral student advisor Chen-Yeou Yu and professorial advisor Wensheng

Zhang for helping to guide our team.

1.2 PROBLEM AND PROJECT STATEMENT

There is a large need to monitor and characterize the overall quality of roads in order to

prioritize maintenance of infrastructure. The existing solution often used are class 1

profilometers, which are expensive systems that must be mounted to the vehicle. This

prohibits small organizations from obtaining and is costly for very large organizations to

maintain a fleet of such devices. Resultantly, there is a need for a cheaper solution for

determining the roughness of pavement.

Our solution to this problem is a smartphone application that can calculate the

International Roughness Index (IRI) of a given surface. The phone, mounted to the car,

will collect the accelerometer data which will be used to calculate the IRI. Once the

calculation is completed, the application will then store the determined IRI associated

with the road in question, determined by the GPS of the device. As smartphones are

ubiquitous, this will drastically decrease the cost of pavement monitoring.

IRI is a roughness standard designed to quantitively measure the roughness of paved

roads. This data is used by governments and organizations to review and maintain roads

to minimize driver cost and ensure their safety [1]. IRI is the ratio of a vehicle’s vertical

displacement (via suspension) over the distance traveled during a unit of measurement.

The result is a slope, commonly expressed in m/km or in/mi. Below is an example of road

ratings with corresponding IRI ranges.

7

FINAL REPORT | SDMAY20-17

Figure 1: IRI roughness scale [2]

The optimal deliverable we hope to have by the end of this project is a platform that can

be used to measure and store pavement roughness data, using a client and server model.

Potential users of our project should be able to setup a multitude of client devices to

measure road data, which would be able to be processed and stored in real-time. The

outputs of project should be robust frontend and backend systems that allow for easy,

intuitive, and useful data metrics on pavement roughness. All of this done using a low

setup and operating budget from the client.

1.3 OPERATIONAL ENVIRONMENT

The app will be used on a phone that has been mounted to the dash of the car or truck.

Since it will be indoors it won’t need any special protection other than what the phone

already offers. The car mount however should be very sturdy and stable as any

unintentional movement of the device during measurement could affect the outputted

data from our calculations. Since the application will be running on a smartphone, it is

important to consider the battery usage during measurement and processes in our project.

1.4 REQUIREMENTS

Functional Requirements:

1. Project requires an Android app representing the front end for the user, and a

server for the backend.

2. Android app must take accelerometer data from the device’s onboard sensors.

3. App must log the route taken by the user during the roughness measuring.

4. Data acquired shall include GPS coordinates, accelerometer values in all axes, and

IRI values among each step of the route.

5. System shall use a user-based system to identify app users.

8

FINAL REPORT | SDMAY20-17

6. The server shall be backed on NodeJS framework.

7. All relevant data relating to routes, users, etc. will be stored in a MongoDB

database system.

8. Application shall have minimum API support for Android Nougat and newer

versions of Android.

9. Application shall be able to calculate pavement roughness offline if the cellular

connection is weak or nonexistent.

10. All data gathered during the route shall be saved on smartphone’s local storage in

case of connection error.

Economic Requirements:

11. Android application shall perform optimally on most phones commercially

available. The platform and all its components shall not use purchased or premium

software for any of its functionalities. Internet connectivity to enable connection with

the application server.

Financial Requirements:

12. Team members will need Android phones for testing and development of the

application.

13. A server to perform certain calculations involved in IRI calculation, and a database

to store previously gathered data.

14. A vehicle with a phone holder will be required to test and verify the quality of IRI

calculations.

Non-Functional Requirements:

15. Failed login attempts shall be logged for auditing.

16. Any error propagated during server runtime shall be logged to a local file for

evaluation.

17. The server should be capable of handling 20 users simultaneously without

affecting performance.

18. Server software should function independent of the operating system it is running

on.

Environmental Requirements:

19. Application must be able to generate accurate roughness calculations in various

motorized vehicle types.

UI Requirements:

20. Frontend user interface must by easy to use by the user while they are operating a

motor vehicle.

9

FINAL REPORT | SDMAY20-17

21. Interface should show real-time accelerometer data, location coordinates, and IRI

value during route measuring.

1.5 INTENDED USERS AND USES

This project is designed for future use by transportation departments within government

organizations. These groups will use our product to test a large range of pavement, usually

on roads, across a geographic area. In these various areas, the cell service and GPS

reception quality may change and could affect the ideal functionality of the application.

The application will be run on an Android device mounted to the vehicle being driven,

possibly in different orientations. The driver or passenger of the app may interface with

the application during routing or use. Different vehicles could also be used to take

measurements. The organization using our project will run an instance of our server

application and database. Our team will communicate with the client during the

development and testing of the product to ensure the solution is functional and usable for

their needs.

1.6 ASSUMPTIONS AND LIMITATIONS

The concept of this project has been implemented by several parties to this day (see

Section 3.1 for details). Our goal is to develop a similar solution but customized for the

client while creating a new roughness calculation method. As such, our project may differ

from ideal or established IRI propagation methods in order to produce a more accurate

solution tailored to the limited inputs from smartphones.

Assumptions:

• Accurate IRI calculations can be performed using only accelerometer data.

• IRI calculations will be performed in real-time during sensor data collection.

• The vehicle will keep a constant speed while using application, within some

margin.

• The smartphone will have a stable GPS connection during route recording.

• The smartphone being used has an accelerometer built in. This sensor is crucial in

getting the acceleration data used in the roughness calculations.

• The vehicle is being driven on some type of paved surface. The model developed

assumes the vehicle is on a paved surface, as unpaved ground could produce a

large noise that will affect the roughness estimations.

• The vehicle features a conventional suspension system seen on most commercially

available cars. The quarter model outlines a common system of forces used to

generate our roughness values. Uncommon suspension systems may alter this

model, producing unintended results as they deviate from the quarter car.

10

FINAL REPORT | SDMAY20-17

• The server application will be running on an operating system officially supported

by NodeJS.

Limitations:

• Less accurate than high cost class 1 profilometers. Due to the accuracy of GPS

receivers in smartphones and the minimal values we are measuring directly, it is

unlikely that our solution’s predictions will be as accurate as hardware specifically

designed for pavement roughness measurement.

• Will require the user to have a smartphone running Android OS. Since one of the

client requirements for this project is to create an Android app, we will only be

able to utilize smartphones running Android OS.

• May be calculation intensive, requiring server-side calculations which could

potentially limit the number of concurrent users.

• Cellular signal may limit the frequency of data from client to server or vice versa.

Signal strength could limit our applications communication with the server,

disrupting the data sent and received in real-time on the smartphone.

• Computing hardware running server instance may affect performance of

calculations. The efficiency of the calculations is partly dependent on the hardware

it is on.

• GPS accuracy of smartphones will affect roughness predictions. Inaccurate

coordinates during route recording could affect the estimated roughness value, as

these coordinates will be used in calculating distance traveled over a length of

time.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

• Android application - May 2019

o Used to collect accelerometer and GPS data while the user is driving

o Calculates the IRI of the road driven on

• Server/Database - May 2019

o Alternative calculation of IRI if the calculation is too intensive for a phone

o Maintain all calculated IRI values and their associated roads

The smartphone application will simply be a tool that will allow the user to determine the

roughness of a road. Before driving over a stretch of pavement, the user will attach the

phone to the windshield of the vehicle, start the session, and then drive over the road. The

application will then use the derived formula to generate a value to assign the roughness

of the stretch of road.

There will a server and database that exist to support the application. While unknown at

the moment, it is expected that the formula used to calculate the IRI value could be very

time intensive. If it is, it could be too slow for the phone to perform the calculations, and

11

FINAL REPORT | SDMAY20-17

we would then use the server to do these calculations. Also, the IRI values will be stored

along with the road segment driven on the database to allow the user to retrieve past data.

Both tasks are intertwined with each other and require significant work to complete. As

such, the deliverables are both scheduled to be completed by the month of May 2019. For

a more detailed analysis of the tentative project schedule, please see Section 4.1.

2. Specifications and Analysis

2.1 REVISED PROJECT DESIGN

The proposed design was to create an Android-based application to record accelerometer

data and the geographic location of the device. The device will transmit the accelerometer

data and the geographic location data to a database. Both the device and database will

then calculate an International Roughness Index (IRI) value using the quarter-car model

for computing IRI. The device will then display the calculated IRI values on a map of

roads. Optionally, an image can be recorded at the time of accelerometer data collection

and stored along with the accelerometer and geographic location data. IRI standards must

be followed by the value calculation.

Figure 2: Quarter-car model of a vehicle suspension system [3].

Our calculation method to obtain IRI initially utilized the quarter car model, a establishes

a standard vehicle suspension system. This system is used to simulate the suspension

system of a vehicle and the forces associated with its components. Its main components

are the sprung mass (car frame), the suspension spring composed of a spring and damper,

and an unsprung mass, representing the wheel hub, tire, rim, etc. [3].

12

FINAL REPORT | SDMAY20-17

The final version of the project uses two methods of calculation; a simple estimation of the

IRI to be continuously updated for a live response, and a more rigorous calculation only to

be performed at the conclusion of the route. The method used for live calculation assumes

the acceleration data is collected in an ideal environment, ignoring the effects of

suspension. Thus, by integrating the acceleration data to approximate instantaneous

velocity, we can perform a computationally simple estimation of the average IRI, up to a

certain point in time. Although the resulting calculations may not be precise, it is

sufficient to give the user qualitative information regarding road quality.

The more rigorous calculation first populates an array of velocities and vertical heights

over time by performing Reimann integrals to first calculate the instantaneous vertical

velocity, and then again to find the road profile. Once these arrays are populated, it is

processed using a Butterworth filter to remove any periodic noise with wavelength below

approximately 2 Hertz and above approximately 420 Hertz. Next, we simulate the system

shown in Figure 2, given the state space matrix, shown in Equation 1 below. Given the

acceleration, and calculated velocity and height of the unsprung mass, solving the

equation finds the profile of the pavement, which can be easily used to calculate the

vertical displacement per distance driven, or the IRI of the route driven.

Figure 3: State space matrix representation of system shown in Figure 2 [7].

All of the data recorded and produced by our application and server will still be stored in a

database. We stuck with the initial design to use MongoDB as our database program,

which is a cross-platform framework that organizes data into JSON-like documents [4].

Some examples of the data we store include user profiles, sensor data collected from the

smartphones, and the roughness calculates we calculate. Values will be linked through

unique users and the routes that they record. Below is a sketch of the database structure.

13

FINAL REPORT | SDMAY20-17

Figure 4: Database structure with types and relationships

The data is read and written by using the MongoDB driver for NodeJS, which is

maintained by the same team that develops Mongo itself. This allows us to sanitize the

data received from the frontend before it is placed in the database. Figure 4 shows each

major component of the system and their functions.

Figure 5: Block diagram of proposed solution with functionalities.

14

FINAL REPORT | SDMAY20-17

The server will use NodeJS and communicate with our Android application using

Socket.IO, using preset event names for login,recording,data fetching,etc. tasks. During

route recording the server will receive the datapoints and pass them into a separate route

manager written in Python, which will perform all calculations. This manager will process

route data during and after routes have completed, where it will output the data back to

the server. On route end, the server will export this data to CSV and GPX files for future

use and analyzing by users, as well as push this route to the database. The CSV and GPX

files will be accessible via public URLs on the website.

2.2 DESIGN ANALYSIS

Our final design is largely similar to the initial one proposed the previous semester. While

the final implementation differs, the design and intended functionality between each

piece (frontend,backend,database) is almost the same.

The first change was the movement of the IRI calculation from the NodeJS server to a

separate Python program. The Python script acts as a daemon for the server to submit the

user’s data as it comes in, and the script processes that data. This was a desire by our

client to put the calculation/data processing in Python for it to be more accessible to their

team members in the future. To support that, the script can also be run independently

from the server by using a command line argument (more about this in the

implementation section of this document).

The other change was the omission of a locally running IRI calculation on the Android

app. To get the amount of data needed for a reliable IRI calculation, route data, including

location and accelerometer values, need to be collected every few inches during a route.

When travelling at a speed of 50+ miles per hour, we needed an update rate of about 1kHz.

Even with minimal background processes running on the phone, our testing showed a real

update rate of 333-1000Hz. Because of this, we did not want to add additional processing

during data acquisition.

2.3 DEVELOPMENT PROCESS

We are following an Agile development process because of software-focused deliverables.

Using an Agile-based process allowing us to compile our requirements into features to

complete. These features will be assigned to our members which allows us to track

progress for each member. A scrum board will allow members of easily see the status of

the project at any moment in time. This includes features waiting to be worked on,

current tasks for each member, and completed features. Our milestones will represent a

release for the team, representing a group of features completed to create a significant

piece of the system or final deliverable. Following standard Agile practices, our team will

also be creating and executing tests for features developed throughout the project. These

tests are outlined in a later section of this document.

15

FINAL REPORT | SDMAY20-17

Our frequent communication with the client will align with our Agile springs, allowing for

variable input and changing requirements throughout the duration of the project.

Meetings will provide individual status updates as well as project progress. Individual

tasks will be evaluated on their progress compared to the project schedule, detailed in

Section 4.

2.4 DESIGN PLAN

The International Roughness Index (IRI) characterizes the approximate roughness of a

given surface and is used in the maintenance of roads. The application will allow for a user

to instruct the application to begin IRI calculation and to transmit the data to a central

database. The application will also record the GPS location of the device in this situation.

In a separate use-case, a user will want to know the roughness of roads that have already

been recorded. In this situation, the user will want to access a map overlay with the

recorded pavement roughnesses. The application will contain a separate user interface

containing the map that will allow for a user to scroll around the map and identify the

roughnesses that have already been calculated.

Our design plan consists of two concurrent areas of the project being developed: the

frontend and backend. For the Android application, we are laying out tasks as to maximize

the amount of simultaneous work that can be done. For example, one member will design

and create the user interface for the application. It will be mostly non-functional skeleton

of our application that will be used to place our functional elements that other members

are working on. This allows multiple to contribute to its development while also

minimizing dependencies on others’ work, creating bottlenecks. Provided below are some

of screen sketches for the application, the remainder are in Appendix I. The UI consists of:

a route screen, user-login/signup page, route history page, and settings. The route screen

is where the user can start and stop route recording, see the current IRI, and the current

readings of acceleration and location of the device. The route history will contain all of the

users previously recorded routes, with details for each step of those routes. The settings

menu will be used to input the user’s car information. This is used to calibrate the quarter-

car model used for IRI calculations.

To reduce redundancies created by implementing similar features into the application, we

have multiple interfaces developed for modularity. First is a location interface, that

compartmentalizes all GPS initialization and management processes. It allows the user to

get current location data and setup periodic location update procedures for their

activities, like callback function setters. This interface is used in our route gathering

screen as well as our route detail screen to view previous routes overlaid on a map view.

The next interface for the Android app implements our network utilities. This set of

functions is responsible for data transmission and reception from our server. This

16

FINAL REPORT | SDMAY20-17

interface is used heavily in all activities of the frontend and therefore, it is a priority that it

is completed earlier in the development cycle.

Our project plan focusses heavily on completing core requirements of our project. Some

requirements, which detail specific uses or constraints for features in our platform, are

inherently dependent on the initial feature being implemented in the first place.

Therefore, we need to create reliable, functioning core software which we will optimize to

fit all the requirements by the end of this project.

17

FINAL REPORT | SDMAY20-17

 Route Screen (while measuring IRI): Settings Screen:

 Route History List Screen: Route History View Screen:

Figure 6: Screen sketches for Android application

18

FINAL REPORT | SDMAY20-17

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

Similar mobile applications exist with varied amounts of the features our project will

contain. Some of the existing products have IRI calculation implemented alongside GPS

tracking, which is part of the end goal for our product [6]. The advantage of these

products is that they have been publicly available for long periods of time and have been

tested by a larger audience. The disadvantage is these applications require the user to use

their platform only with minimal customization. In addition, you must export the data

gathered by these tools and perform analytics independently if the data they provide is not

sufficient. Our project will be all inclusive, meaning that the final deliverables will include

the server and database portion as well as the frontend application. This will give the

client complete control over their data storage and customized analytics to fit their

requirements.

The biggest strength about the technology that is currently available is that it calculates

IRI accurately, so we have a basis to test our data around. Having some examples to look

at also gives us an idea about what to avoid. The biggest issue with some apps is that they

do not use GPS tracking with the IRI calculations, or they do not have ways to store the

data. Our goal with the project is to have an application that has the required features as

well as some quality of life features. Most existing products calculate IRI on the frontend

side as the accelerometer data is coming in. For our project, we will have a way to

calculate IRI on the smartphone, but we will also be sending data to a server and store it in

a database so that it takes some load off the phone.

Since IRI is a widely used standard of measurement, there is a wealth of existing research

on methods of getting it as well as instruments used to calculate it. This includes the

quarter car model that our calculation will be based on. A graduate student from the

University of Illinois adapted this model to calculate the roughness using smartphone

acceleration data, which is the same procedure we are using [7]. Our goal is to apply this

model in the context of our Android application, and the use case of a smartphone

mounted to a vehicle.

3.2 IMPLEMENTATION

3.2.1 Server

Our final server is written in NodeJS using additional npm packages. Express is used to

add URLs directing to the exported CSVs and GPXs generated at the end of routes. The

GPX files can be used to replay the user’s movement during the route using tools like the

Android emulator. These are generated by passing lists of the route points’ latitude and

longitude into a library called GPS-to-GPX.

19

FINAL REPORT | SDMAY20-17

Socket.IO is the library we are basing our client-server communication modules on. This

was chosen over HTTP requests because of its ease of use, consistent API, and versatility.

IO’s libraries are available for both Node and Android, sharing much of the same syntax

and interfaces. Communications can also bi-directional, whereas in HTTP only the app

could start a data transfer. This means that the server can send data to an instance of the

Android app without any explicit request from the app. When a socket connection is

made to the server, it calls registerListeners(socket) from each of our modules. Each

module implements this function by adding their event listeners to each connection.

These are strings, such as “new_route”, that signal when a user on the frontend has

emitted a specific event. When the user submits a successful log in attempt, the server

stores a reference to the socket for future use.

For processing route data, the server spawns an instance of the route manager Python tool

and creates callback functions to it’s stderr and stdout pipes, allowing the tool to output

data back to the server in JSON format. Route data and commands are also sent via JSON.

3.2.2 Android App

Our frontend application will be built for Android using Java. All of our team members

have had coursework and project experience with Java and programming for the Android

environment. In addition, there is a wealth of support and examples for Android

applications, including those using GPS and onboard sensors. One disadvantage is having

to design a user interface that looks and performs adequately on many different screen

sizes and forms. With more restrictive permissions in newer permissions in Android OS,

we may be limited on the accuracy or availability of the data measured from the hardware

components. The performance of the application will also vary with the computing power

of the smartphone it is running on. Therefore, it is important that we develop efficient

routines, minimizing CPU and memory usage on the frontend. Therefore, we are putting

the primary calculation responsibility on the server.

20

FINAL REPORT | SDMAY20-17

Figure 7: Screenshots of final Android application

3.2.3 Python Computation Tool

As mentioned previously, our application uses two methods of calculating IRI to meet both the

need for immediate feedback to the user, and another method for a more precise calculation. As

the user drives, the application collects acceleration and GPS data and transfers packaged data

points to the server to be processed, to try to minimize the computational resources required on

the front end. On the server side, as each point is received, a simple integration approximation is

used to convert acceleration data to both velocity and an estimated road height. In this way, we can

compute vital road profile data in real time.

The live IRI calculations are computed by adding the change in pavement height between each data

point and dividing by the distance driven. Although this may be less accurate, it gives a prompt

estimation to the user without needing to perform complex calculations, which would not be

feasible given the time constraints. At a later point in time, the acceleration, velocity, and estimated

pavement height computed in real time, is used to populate the state space vectors, shown in

Figure 3, and through solving the equation, a more precise road profile is calculated, taking

suspension into account, allowing for a more accurate IRI calculation.

Additionally, at the conclusion of the route, this profile data is then filtered through a bandpass

filter to remove unwanted frequency responses. Figure 8 below, shows the preprocessed

acceleration, while Figure 9 shows against the same acceleration data with frequency components

between 2 and 420 Hertz. This comparison demonstrates why filtering is so vital to producing

21

FINAL REPORT | SDMAY20-17

accurate results, as the raw data is dominated by low frequency components, including the

constant acceleration due to gravity. Using our standalone IRI computation method, the unfiltered

data produces an IRI value of approximately 160 meters/km, while the filtered data results in an IRI

of about 0.7 meters/km. Although we were unable to obtain the equipment to find the definitive

IRI, 160 meters/km is absurdly large, while 0.7 meters/km is reasonable for a smooth stretch of

pavement. Additionally, if the user had access to a class 1 profilometer, they would have the ability

to adjust both filtering values and quarter-car model constants to tune in the calculation.

Figure 8: Frequency response of acceleration over a sample route (unfiltered)

Figure 9: Frequency response of acceleration over a sample route (filtered)

3.3 TASK DECOMPOSITION

The development cycle for this project can be broken down into two main platforms: the

frontend Android application, and the backend NodeJS server. Each platform has multiple

tasks that are dependent on them, and some that require sufficient progress complete on

both. This requires close communication between members working on either platform to

complete more system-level tasks, like getting data from the database to the Android

application.

1. Create NodeJS server. Have a local instance of a NodeJS application running on

the virtual machine being used as the server for this project. Server should be

reachable by other devices.

22

FINAL REPORT | SDMAY20-17

2. Create database with formats for data types and attributes. Test data should

be inserted and relations between data types should perform as expected.

3. Link server and database for data reading/writing functionality. Server

should be able to programmatically read and write known data to database

instance using proper modules.

4. Develop user-interface for Android app. This includes all screens and

interactive elements of application. Some functionality of these items may need to

be completed in later tasks.

5. Create networking framework for frontend to communicate with backend.

This includes Android and NodeJS network interfaces and should communicate

over any data connection, not just locally/simulated.

6. Develop IRI calculation algorithm for acceleration data from Android

phones. Create mathematic model for calculating roughness predictions based on

known inputs that the smartphone will measure.

7. Implement algorithm on backend and frontend for online and offline

functionality. Take the model developed in the previous task and implement it in

Java for Android and JavaScript for the server. Test implementations for

correctness and consistency.

8. Add GPS tracking and logging to Android app. Create interface for getting real-

time coordinates of smartphone and integrate usage of interface in route recording

activity.

9. Couple GPS and IRI data to create path histories for users. Organize and

query database for entries relating to current user on frontend and be able to pull

all required data.

10. System/acceptance testing with frontend, backend, and database. Testing

procedures detailed in Section 5.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Milestone 1: Validated IRI Roughness Calculation Model. This will be considered

complete with the model is proved to be correct and outputs accurate IRI values using

location and acceleration data taken from a smartphone.

Milestone 2: Alpha Version of Platforms Complete. The Android application and server

contain implementations of all core functionalities derived from functional requirements.

Unit test suites for each feature are established as outlined in Section 5 of this document.

Milestone 3; Refine Software Solutions using Test Results. This release will be the

combination of bug-fixes and improvements to alpha software until it satisfies most

functional and non-functional requirements. Integration tests should also be performed

here.

23

FINAL REPORT | SDMAY20-17

Milestone 4: System and Acceptance Testing Complete. At this point, all aspects of

solution have been validated and approved to meet all requirements outlined by client

and in this document.

3.6 PROJECT TRACKING PROCEDURES

We will be making use of the Issues page on the ECE GitLab, where our Git repository for

the project is located. There, we will be able to create a board similar to that of a scum-

Agile project board. Requirements will be broken down into software features to be

implemented, or the “issues”. Issues that are in progress will be labeled as such and

assigned to the team member working on that specific feature. Issues will be categorized

by frontend and backend and grouped into milestones that will track the big picture

progress of the project.

In addition, we will be releasing reports throughout this semester and the next on our

team website. These will detail all work done on the project, including design and

technical related progress being contributed by team members.

3.7 EXPECTED RESULTS AND VALIDATION

The desired outcome of the product is to have an android application that can accurately

measure pavement roughness. The app will be mounted in a car or truck and will take the

accelerometer data off the phone. The application will be easy to use and have relevant

GPS and IRI data for the user to view. The final result should also have the appearance and

accuracy of a finished product.

In order to test the accuracy of the application, we will take data from roads that have

been measured by the Civil Engineering department. This department has an accurate

device for measuring roughness that we can use to compare data. We will also test our

application using a similar vehicle in order to get completely accurate data.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

This project is comprised of two major sections, the frontend and backend. To implement

these components, our group will split into two smaller teams, each focusing on one of the

platforms concurrently. The schedule shown below shows the tasks outlined in section 3.3

of this document with their start and end dates. The schedule shown below shows the

tasks outlined in section 3.3 of this document with their start and end dates.

24

FINAL REPORT | SDMAY20-17

Figure 10: Project Schedule Gantt Chart

The length of each task corresponds to the estimated time to implement all of its required

features. More complex tasks have longer work periods. Most of the tasks are centered

around software features being implemented to each respective platform. During each

“feature” task, there is a certain amount of time included in these tasks to account for

basic testing of the additions, such as unit-testing.

A block outlined in red represents a deliverable or release for our project. Due to the

length of development for some of our project components, we are adopting a Kanban-

like release cycle, which will align with significant features working on the application and

server. The server deliverable represents completion of the IRI calculation using the real-

time accelerometer data from the Android application. At this point, there should be

transmitting and receiving of route data and roughness measurements on the frontend,

with a functional route tracking interface (first Android deliverable). The second Android

release corresponds to the end of the project, where all requirements have been fulfilled

and every essential feature of the frontend and backend is fully functional.

4.3 PERSONNEL EFFORT REQUIREMENTS

The initial few tasks of the project are mainly setting up the server and database and

making sure everything is connected correctly. This will not take too much time, so a few

hours for each should be enough time. The next few parts are setting up the android app

and making sure it can communicate with the backend. This will take a little longer than

in order to make sure everything is communicating correctly with each other. The next

part is developing the actual calculation for IRI. This will take a few weeks to convert data

we can pull off the smartphone into a value that people can use. We will also be

preforming a variety of testing procedures to make sure that the values are correct.

25

FINAL REPORT | SDMAY20-17

Following having these parts work independently of each other, we will begin to integrate

all the parts into a more well-rounded solution. This includes setting up offline and online

calculations, which could be tricky, so we assigned about one week to figuring this out.

Task 8 will be setting up GPS data. This task has been allotted three weeks so that we can

get it working accurately. The next task will be making sure everything works together,

which would take about a week, mainly dealing with bugs that arise. Lastly, we need to

test our product, so a few days have been allotted to make sure our app is accurate.

Tasks Projected Members Estimated Time

Task 1: Server Initial Setup Tanner, 5 hours

Task 2: Database Initial Setup Tanner, Kyle 5 hours

Task 3: Server/Database
Interaction

Tanner, Kyle
15 hours

Task 4: Client/Server
Communication

Tanner, Kyle, Justin
20 hours

Task 5: Android App Basic Setup Greg, Christian, Justin 25 hours

Task 6: IRI Algorithm/Testing Tanner, Joe 45 hours

Task 7: Online/Offline IRI
Calculation

Tanner, Joe
40 hours

Task 8: User Account Login Justin, Christian, Greg 20 hours

Task 9: IRI Calibration Tanner, Joe 40 hours

Task 10: System/Integration
Testing

Joe, Christian, Greg,
Kyle, Tanner, Justin

40 hours

Table 1: Personnel Effort Requirements

4.4 OTHER RESOURCE REQUIREMENTS

• Android-based devices to test the application.

• Server space to hold database data and run instance of server application.

• LASER-based IRI measurement device and vehicle to compare the application

values.

• Previous route data with GPS coordinates, acceleration data, and known IRI values

in order to test correctness of designed IRI algorithm.

4.5 FINANCIAL REQUIREMENTS

Our team anticipated three Android phones to be used during the development of the

Android application. In addition, we were provided to a web server to be used to host our

server application and provide a database. Our team members’ vehicles will be used to test

the data acquisition and IRI calculations.

26

FINAL REPORT | SDMAY20-17

Required Item Count Unit Cost Total Cost

Android Phone 3 $50+ (Cheap Android
phone prices may

vary)

$0-150+

Server (Development
phase)

10 months $0 (Provided by ETG) $0

Phone Mount for
Windshield

3 $20.00 $60.00

Total $60-$210

Table 2: Financial Requirements

Due to extenuating circumstances, we did complete has much real-world testing as we

would have desired. Because of this, we also did not require Android devices or phone

mounts for our project, leaving the actual final cost of this project to be $0.

5. Testing and Implementation

5.1 HARDWARE AND SOFTWARE

All our testing will be software testing, as there is no physical component to this project.

We will be performing unit testing throughout the entirety of the development of the

application, to ensure all the low-level code works exactly as intended. As we build the

application from disparate pieces of code, we will then perform integration testing to

ensure, for example, that the accelerometer values collected are successfully transferred to

the server. Additionally, as we develop our algorithm for calculating the IRI value, we will

need to be continuously testing our program in comparison to known values. Finally, we

will perform user acceptance testing to ensure all functional and non-functional

requirements have been adequately met.

We also want to evaluate the performance of our Android platform to minimize the use of

system resources like CPU and battery. For this, Android Studio includes a profiler tool

which will let us monitor resource usage of our app in real-time. Using this, we will be

able to optimize our platform to better meet performance requirements.

5.2 FUNCTIONAL TESTING

Unfortunately, due to time restrictions during our development, we did not get to create

programmatic unit tests for our modules. We did manage to demonstrate the

functionality of our modules with respect to our requirements. The expected outcomes are

listed below, and results are included in a later section.

27

FINAL REPORT | SDMAY20-17

Below is a table of the test plan created for our functional requirements. Each test has a

requirement number that corresponds to one of the requirements in Section 1.4, as well as

the test’s description and expected outcome. Some entries may be comprised of one or

more physical tests, which together will validate each test description with its outcome.

Require

ment
Description Expected Outcome Real Outcome

Test

Environment

2
Evaluate data gathered

from sensor interface.

Acceleration data with

proper accuracy and

within valid range.

Acceleration

values seen on

server and

database are

within valid values.

Standalone

Android Device

3

Simulate route start and

end and evaluate local

log file on Android

device for accurate route

data given.

Route data in log file

should match

simulated route given

by test.

Pre-generated

route produces

CSV,GPX files with

exact data

inputted.

Android Emulator

4

Call location interface to

get current latitude and

longitude of emulated

device.

Location data returned

should be correct in

location and accuracy,

matching the

emulator’s position

defined in its settings.

Location given in

datapoints is up-

to-date with user’s

current location,

depending on

connection.

Android Emulator

4

Valid route data with

known IRI values passed

into calculation interface

and compare outputs.

Server and Android

implementations tested

separately.

IRI values calculated at

each route step should

make accepted IRI

values within margin

of error.

N/A
Junit (Android) /

Mocha (Server).

4

Pavement data gathered

by profilometer on

specified route will be

compared to data

gathered by Android

application.

IRI data calculated

using our platform

should match closely

to that gathered by the

profilometer, within a

reasonable error range

Test not performed

with direct data

comparison

Standalone

Android Device,

Pavement Route

5

Call user creation

function with known

username and password.

Server shall return

success on insertion of

new user into

database.

Server reports

successful account

creation if user

data added to

database.

Mocha (Server)

5

Simulate user creation

though frontend

application’s UI.

Frontend shall report

successful creation,

user’s entry seen in

Server returns

error free status to

app, which

Espresso

(Android),

Database Logs

28

FINAL REPORT | SDMAY20-17

Table 3: Test Plan for Functional Requirements

5.3 NON-FUNCTIONAL TESTING

The table below shows the tests associated with each non-functional requirement detailed

in Section 1.4. Each of these requirements were tested with the final product and were

found to be satisfied, except those filled with red in the table below. The lack of available

database. switches to login

screen.

5

Call user login function

with known existing

credentials. Frontend

and backend calls tested

separately then together.

Function shall return

user object of valid

user previously

created.

Server returns

outcome and

possible error of

login check using

database.

Junit (Android),

Mocha (Server)

7

Insertion of known data

with corresponding

functions on server.

Separate tests for all data

types stored.

Data passed should be

seen in database.

Data can be seen

in database

matching that

inserted.

Mocha (Server),

Database Review

7

Data inserted into

database from server

should be immediately

available to pull by

corresponding get

function.

Server shall

immediately request

data after insertion.

Data shall match

inserted data in values

and formatting.

Route history

screen on app

allows users to

view old routes

from database.

Mocha (Server)

8

App reviewed for

compliance with Android

Nougat API

requirements.

App works with

Android Nougat and

above operating

systems.

App functionality

verified on 7.0 and

8.0 OS.

Standalone

Android Device.

9

Simulated route with

known IRI values. During

route, disconnect device

and watch for switch to

offline calculation mode.

Device should notify

user of connection

error and switch to

offline calculation.

Calculated values

should match known

IRI within margin of

error.

Application warns

user of server

disconnect before

route start.

Android Emulator,

Espresso (Android)

10

Record route while
device is disconnected

from Internet. View
route history to see
offline route’s data.

Route shall be
recorded and stored

on device with all
relevant data intact.

Route data is
written to CSV on
Android storage if
permitted, cannot

be uploaded to
server post-route.

Android Emulator,
Standalone

Android Device

29

FINAL REPORT | SDMAY20-17

hardware and ability to do real-world testing with multiple team members and client

made it difficult to test the concurrent user and IRI comparison requirements.

Req
#.

Description Expected Outcome Real Outcome
Test

Environment

11

Application and all
functionalities outlined in
functional requirements

should be tested on
multiple Android devices
with different hardware.

All functionalities of
app should work and
give expected values

within margins of error
on all devices tested.

Most of expected
functionality of

app implemented.
Offline IRI

functionality not
available

Standalone
Android
Devices

11

Server and frontend shall
be rebuilt on clean

environments to ensure
no underlying paid

software was previously
used.

Systems should be able
to be setup and

operated on clean
systems with no

premium software or
programs.

Server setup and
run on 3 separate
machines with 0

premium
packages. Android
app uses no paid
modules/services

Server
Computer,

Android Device

15
Test login interface with
invalid user credentials.

Server should return
error indicating invalid

user. Corresponding
error file on server

should all contain error.

Server returns
error string

explaining the
issue with the
user’s given
credentials

Junit
(Android),

Mocha (Server)

16

Create function on server
to throw intentional
error. Call function
through test suite.

Log file on server
should contain error
info matching error
thrown in function.

Stderr output
from server is

logged to
/output/err.log

file

Mocha (Server)

17

20 concurrent users will
be simulated using

HTTP/Socket calls on
server test suite. Server
performance shall be

monitored through delay
in data being received.

Data received from
server shall be delivered
in reasonable time with

all users connected.

N/A

Mocha (Server)

18

Server will be setup on
hardware running

different OS then primary
server. Calls to server
functions used to test

functionalities.

All functions on server
should perform

identically on hardware
running different OS

than primary

Server was setup
on two Windows
machines and the
Linux production

server (Ubuntu 16)

Test Server,
Primary Server,
Mocha (Server)

19

Route will be recorded in
various vehicle on same
route with known IRI

value.

IRI values calculated in
each vehicle should
match the known

within margin of error.

N/A
Standalone

Android Device

30

FINAL REPORT | SDMAY20-17

Table 4: Test Results for Non-functional Requirements

5.4 PROCESS

The IRI calculation will be tested by comparing the calculation with a separate calculation

conducted by a LASER-based method. This testing will determine whether the differences

in the LASER-based calculation and the Android-based calculation are within a percentage

of error or not. Communication between the server and the device will be conducted

through testing whether information on the server can be received by the device. Map

information will be tested by comparing information stored on the database with

information that the device receives from the database.

21

User interface will be
evaluated during route

for correctly and updated
values shown on screen.

The app should display
the route data in real-

time as the user is
driving

Current IRI and
route distance

values are
returned from

server while user
records route

Android
Emulator,

Standalone
Android

Device, Junit
(Android)

31

FINAL REPORT | SDMAY20-17

Figure 11: Process Diagram

5.5 RESULTS

Our project development unfortunately took longer than we anticipated due to the

unfamiliarity with some of the tools as well as extenuating circumstances. As a result, we

choose to work more on implementing features than performing formal testing. The

testing that was performed was at an integration/system level. All client server

connections were verified using a local and remote instance of the server. Features on the

Android application were verified using an Android emulator as well as real devices. The

Python route manager was tested using pre-generated route data passed from the NodeJS

server before using real route data.

Our IRI calculation was tested using data gathered by our application over a variety of

different pavement types. Unfortunately, we did not have access to any known IRI values,

or any alternative profilometers. Although it was not possible to precisely tune in our IRI

calculation, we were able to make some qualitative observations. The live IRI calculation

seems to track well with user observed roughness, for example it calculates the IRI of a

32

FINAL REPORT | SDMAY20-17

gravel road to be higher than that of an interstate highway, which is logical. Also, we

observe that both calculation methods are extremely dependent on filtering methods, and

the state space calculation is highly dependent on the state space model parameters.

When using recommended filtering values (2 Hz to 420 Hz), both calculation methods

produce results that tend to be on the lower end of the IRI scale. Given access to more

known pavement IRIs, we would have been able to perform more rigorous, analytical

testing.

6. Closing Material

6.1 CONCLUSION

Our project came close to all the functionalities that set out to implement using the given

requirements. Given the move to purely remote communication and development, our

team struggled with real world testing and verification of our IRI calculation of roads. If

we were to start this project fresh over again, we would have likely begun rapid

prototyping and testing our data with known IRI values sooner so we could continually

test that with our developments throughout the rest of the project. Nevertheless, our

system functions as a robust data acquisition and processing tool, that should hopefully

forward the analysis of road roughness using cheaper and easier tools to operate –

smartphones. All of us are grateful for the opportunity to work on this project and have

picked up skills and knowledge that will certainly prove useful in the future.

6.2 REFERENCES

[1] Pavement Tools Consortium, “Roughness”, Pavement Tools Consortium, Accessed

on: Nov. 17, 2019. Available: https://www.pavementinteractive.org/reference-

desk/pavement-management/pavement-evaluation/roughness/

[2] M. W. Sayers, T. D. Gillespie, & C. A. V. Queiroz, “The international road

roughness experiment: A basis for establishing a standard scale for road roughness

measurements.” Transportation Research Record, 1084, 76-85. 1986

[3] R. N. Jazar, “Quarter Car Model”, pp. 985–1026, Springer, New York, New York, NY,

2014.

[4] “MongoDB: The Database for Modern Applications”, MongoDB, Inc, 2019,

Accessed on: Dec. 3, 2019. Available: https://www.mongodb.com/

[5] Automattic, “Socket.io”, Nov. 25, 2019, Accessed on: Dec. 3, 2019. Available:

https://socket.io/

https://www.pavementinteractive.org/reference-desk/pavement-management/pavement-evaluation/roughness/
https://www.pavementinteractive.org/reference-desk/pavement-management/pavement-evaluation/roughness/
https://www.mongodb.com/
https://socket.io/

33

FINAL REPORT | SDMAY20-17

[6] A. H. Alavi and W. G. Buttlar, “An overview of smartphone technology for citizen-

centered, real-time and scalable civil infrastructure monitoring,” Future Generation

Computer Systems, vol. 93, pp. 651–672, 2019.

[7] S. Islam, "Development of a smartphone application to measure pavement

roughness and to identify surface irregularities," PhD diss., University of Illinois at

Urbana-Champaign, 2015.

[8] “Downloads,” Node.js Foundation, 2019, Accessed on: Dec. 5 2019. Available:

https://nodejs.org/en/download/

6.3 APPENDICES

Appendix I: Screen sketches for Android application

 Login

Screen: Home

Screen:

Appendix II – Operational Manual

NodeJS Server Setup

Prerequisites:

https://nodejs.org/en/download/

34

FINAL REPORT | SDMAY20-17

• NodeJS installed (recommended 12.16.2 LTS or newer)

• Python 3+ installed (3.8 recommended)

1. Open a terminal in the root directory of the server (contains main.js)

2. Run “npm install” to install node dependencies for server. Note: If npm cannot be found,

make sure the path to your NodeJS installation is added to your PATH.

3. In the same terminal, run “python -m pip install -r requirements.txt” to install required

dependencies for the python tool. Make sure the “python” portion of the command

matches a 3+ version of python on the machine.

4. Run “node main.js” to start server. On success, the server should report the port it is

running on (default=80). You may have to add an exception to your firewall.

5. Optional: use npm package forever to manage server instance and automatically restart it if

any fatal errors occur.

Android App Setup

Prerequisites:

• Android device with Android OS 7.0 or newer

• Internet Connectivity, GPS, and accelerometer on device

• Instance of server running

1. Import app project into Android Studio

2. Navigate to file Frontend-CYRI-app/java/com.example.cy_r_i/enums/ServerURL and open

it. Edit the URL_SOCKET_PROD string to make the server computer’s hostname/IP and

port number

3. Run Build>Make Project

4. Install application onto emulator or connected device with USB debugging enabled.

Alternatively, generate APK for application and manually installed onto device

5. On initial login, be sure to enable location permissions to enable route recording

